SW#db: GPU-Accelerated Exact Sequence Similarity Database Search
نویسندگان
چکیده
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
منابع مشابه
Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization...
متن کاملGPU-Based Cloud Service for Smith-Waterman Algorithm Using Frequency Distance Filtration Scheme
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units...
متن کاملGPU Accelerated Self-join for the Distance Similarity Metric
The self-join finds all objects in a dataset within a threshold of each other defined by a similarity metric. As such, the self-join is a building block for the field of databases and data mining, and is employed in Big Data applications. In this paper, we advance a GPU-efficient algorithm for the similarity self-join that uses the Euclidean distance metric. The search-and-refine strategy is an...
متن کاملG-BLASTN: accelerating nucleotide alignment by graphics processors
MOTIVATION Since 1990, the basic local alignment search tool (BLAST) has become one of the most popular and fundamental bioinformatics tools for sequence similarity searching, receiving extensive attention from the research community. The two pioneering papers on BLAST have received over 96 000 citations. Given the huge population of BLAST users and the increasing size of sequence databases, an...
متن کاملAccelerated BLAST Performance with Tera-BLASTTM: a comparison of FPGA versus GPU and CPU BLAST implementations
A number of technologies have emerged for accelerating similarity search algorithms in bioinformatics, including the use of field programmable gate arrays (FPGA), graphics processing units (GPU), and clusters of standard multicore CPUs. Here we present Tera-BLASTTM, an FPGA-accelerated implementation of the BLAST algorithm, and compare the performance to GPU-accelerated BLAST and the industry s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015